激光写光电子学进展

太赫兹单像素成像及其动态掩模材料的研究进展

黄婉霞[†],陈晓晓[†],路学光*

四川大学材料科学与工程学院,四川 成都 610064

摘要 太赫兹成像技术在安全检查、医学成像等领域展现出了巨大的应用潜力。相比传统的机械扫描成像和焦平面阵 列成像,单像素成像具有系统简单、成像速度快及成本低等优势。其可结合空间光调制技术,运用关联算法重构出目标 的二维太赫兹空间信息。从太赫兹单像素成像的基本概念和发展历程出发,着重分析了单像素成像中编码掩模的原理、 材料、发展应用及可能面临的挑战。

DOI: 10.3788/LOP231745

Research Progress of Terahertz Single-Pixel Imaging and Its Dynamic Mask Materials

Huang Wanxia[†], Chen Xiaoxiao[†], Lu Xueguang^{*}

College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China

Abstract Terahertz imaging technology has shown great application potential in the fields of safety inspection and medical imaging. Compared with traditional mechanical scanning imaging and focal plane array imaging, single-pixel imaging has the advantages of simple system, fast imaging speed, and low cost. By combining spatial light modulation technology, the two-dimensional terahertz spatial information of the target can be reconstructed by using the association algorithm. Starting from the basic concept and development process of terahertz single-pixel imaging, this paper focuses on the principle, materials, development applications, and possible challenges of coding masks in single-pixel imaging. **Key words** terahertz; single-pixel imaging; encoding mask; semiconductor; phase change material

1引言

太赫兹(THz)波是波长为0.03~3 mm的电磁波, 介于微波与红外线之间,具有高穿透性、低光子能量和 光谱分辨率等特点。由于 THz波特殊的波谱位置,其 拥有许多区别于其他波段的独有性质,如:THz波能够 穿透各种介电材料和光学不透明非极性材料,包括半 导体、塑料、纸张等,可以高对比度地对隐藏在这些材 料内部的不透明物体(如金属)进行透视成像^[1];此外, 与X射线相比,太赫兹光子能量低(~meV,非电离), 对生物组织大分子不具破坏作用且水分子对 THz波 具有强烈的吸收。基于太赫兹以上特性,太赫兹成像 技术在无损检测^[2]、反恐安全检查^[3]和医学成像^[4]等领 域有极高的应用价值。

但是太赫兹成像技术在具体的应用中还存在图像 采集时间长和图像分辨率有待提高等问题。早期太赫 兹成像主要还是基于单波束二维扫描成像或者线阵一 维扫描成像的方式实现。其中单波束二维扫描需要将

太赫兹波束聚焦到目标物表面,通过逐点改变波束与 目标的横向相对位置来获得目标物体的二维图像。 1995年,贝尔实验室^[5]基于太赫兹波对不同材料的吸 收特性,使用图1(a)所示的自主搭建的太赫兹时域光 谱成像系统进行逐点扫描,获得了半导体集成电路封 装芯片以及不同状态下叶片的 THz 图像, 如图 1(b)和 图 1(c)所示,空间分辨率分别约为 250 µm 和 400 µm, 但受限于单波束机械扫描速度(12 pixel/s),THz成像 速度难以提高。为了解决单点扫描成像耗时长的问 题,研究人员又提出了线阵一维扫描成像方案。如王 彪等^[6]利用工作频率为300 GHz的连续波太赫兹辐射 和线阵探测器搭建了线扫描成像系统,实现了对聚乙 烯水管内部缺陷的检测和对信封内部隐藏的物体的成 像,对于100mm×100mm区域,扫描时间仅需1min, 分辨率达1.5 mm。虽然相比单波束二维扫描提高了 成像速度,但受限于衍射效应的影响,该系统的整体分 辨率较低。

特邀综述

先进成像

收稿日期: 2023-07-17; 修回日期: 2023-08-17; 录用日期: 2023-08-22; 网络首发日期: 2023-09-03

通信作者: 1257400688@qq.com

[†]共同第一作者

图1 太赫兹逐点扫描成像^[5]。(a)原理示意图;(b)半导体集成电路芯片封装的 THz图像;(c)不同状态下叶片的 THz图像 Fig. 1 Terahertz point-by-point scanning imaging^[5]. (a) Schematic diagram; (b) THz image of a semiconductor integrated circuit chip package; (c) THz image of the blade in different states

为进一步提高太赫兹成像速度,解决太赫兹波段 缺少高分辨焦平面阵列探测器的问题,研究人员又提 出了单像素成像的方案。该方案利用无空间分辨力 (单像素)的探测器获得编码后的成像物体的空间信 息,并结合已知的编码模式利用算法实现图像重建^[7]。 相较于多像素太赫兹阵列(仅强度成像),单像素成像 允许以高的信噪比测量电场的幅度和相位信息。这种 方法不仅不需要通常用于光栅扫描的机械运动部件还 保留了单点检测器的高灵敏度,结合压缩感知(CS)理 论后允许以小于像素值的测量值重构图像^[8],提高了成 像速度,同时兼具简化系统、高效率和低成本的优势^[9]。 由于太赫兹波长较长,单像素计算成像在太赫兹波段 的成像视场、成像分辨率不及在光学波段的,但该技术 绕过太赫兹波段焦平面阵列探测器难以获得的难题, 近10年来逐步发展成一种有效的太赫兹成像手段。

本文回顾了近几年来在太赫兹成像系统中应用单 像素成像的发展情况,概述了基于压缩感知理论的单 像素成像原理,介绍了单像素成像中对太赫兹进行图 案化的重要手段,即空间光调制掩模。在此基础上,从 成像时间、空间分辨率、像素数等方面对现在的编码掩 模的优缺点进行了比较和分析。

2 太赫兹单像素成像

单像素计算成像是一种新型的计算成像方法。其 基本思想是利用单像素探测器收集物体的空间强度信息,然后利用收集到的总光强与具有特定空间分布的 图案光强度的相关性计算来重建图像。由于只需要单 像素探测器即可获得物体图像,因此单像素计算成像 可以简化系统结构,降低成本,为太赫兹成像提供了一 种新方法。

2.1 基于压缩感知理论的单像素成像原理

2006年, Candes 等^[10]和 Donoho^[11]提出了一种新 的图像压缩采集方法即CS。它突破了香农-奈奎斯特 采样定律的限制,在对原始数据的采集过程中就减少 采样次数,允许以小于像素值的测量值重构图像,大大 缩短了成像时间,为太赫兹单像素欠采样成像提供了 理论指导。

压缩感知的理论是基于图像的稀疏特性(含有少量非零元素)来实现的。通常来说原始信号本身并不具有稀疏性,要对其在特定基底上进行稀疏表示,即 $x = \Psi \alpha, \Psi$ 为稀疏矩阵, α 为原始信号x对应的稀疏向量。单点检测器采集测量矩阵与原始信号作用的光强信息,即 $y = \Phi x$,通常设定测量矩阵 Φ 的行数M小于列数N,这一步对应着图像的欠采样过程。数学模型

如图 2 所示,整个数学表达式即为 $y = \Phi x = \Phi \Psi \alpha$,式 中稀疏矩阵 Ψ 和测量矩阵 Φ 都是已知的,最后通过重 构算法逆运算出x。

对于测量矩阵 ϕ 的选择,早期是由传统鬼成像参 考光斑灵感得来的高斯随机矩阵,但是研究人员发现 这种随机矩阵在重构图像时的效果不佳,需要更多的 测量次数来维持图像的高信噪比,同时对噪声的抗干 扰能力弱。于是,单像素成像开始尝试利用确定性的 正交基编码来进行,如哈达玛基、傅里叶基、离散余弦基 及小波变换基[12-13]。哈达玛基是目前应用最广泛的测 量矩阵,一方面,单哈达玛基0或1值的二元构造更符合 空间光调制器(SLM)的编码需要;另一方面,利用原始 矩阵中1和-1元素进行差分鬼成像^[14]能够大幅提高成 像的信噪比。而对于傅里叶基和离散余弦基等由不同 灰度值构造而成的正交矩阵,SLM对此需要利用时间 和空间抖动的方法进行灰度值的模拟,在编码的便利 性上不如哈达玛基。近年来,深度学习方法[15]也被应用 于单像素成像矩阵训练,这种新型的编码方法通过预 先学习目标图像的频率信息,在实际测量中能够以更 低的采样率得到较高信噪比的重构图像。

对于随机矩阵或者是循环编码的哈达玛基矩阵重构,它们不能被"压缩",所以一般使用逆矩阵的方法来进行解码。而对于正交基和深度学习编码,测量矩阵通常具有完备的字典集,数学上使用范数法和正交匹配追踪方法来进行求解。在单像素成像中,为了得到更好的图像质量,研究人员引入图像总变分作为参考手段进行优化,也就是目前广泛应用的全变分最小化算法(TV-min)和全变分增广拉格朗日交替算法(TVAL3)^[16-17]。该类算法将图像的全变分范数作为 正则项来构建目标函数进行求解,具有更快的收敛速度、更强的去噪声能力及更好的重建图像质量。

2.2 太赫兹单像素成像系统

根据使用的太赫兹光源不同,太赫兹单像素成像 系统分为图3(a)所示的连续太赫兹波单像素成像系统^[18]和图3(b)所示的脉冲太赫兹波单像素成像系统^[19]。 连续太赫兹单像素成像系统的构造较为简单,只需一 个连续太赫兹源和一个单点探测器,这种方式一般只

Fig. 3 Schematic of a terahertz single-pixel imaging optical path system based on different light sources. (a) Pulsed light source^[18]; (b) continuous light source^[19]

能从探测器中获取光的强度信息,但是可以突破单点 探测的限制,实现线阵或面阵探测器的分割探测^[20],从 而提高探测速度。脉冲太赫兹波单像素系统则需要一 个较为复杂的太赫兹时域光谱系统(THz-TDS)作为 成像的主系统,利用编码掩模的调制,能够同时探测到 光的强度、相位以及飞行时间等信息,除此之外,脉冲 太赫兹波的频谱相对于连续太赫兹波较宽,从而可以 实现功能多样化的包含三维深度信息和材料频谱信息 等的太赫兹单像素成像。

作为太赫兹成像中一种重要的成像技术,太赫 兹单像素成像在目标识别、远场成像、近场成像及高 光谱成像等方面已经有了实际的应用。Augustin 等^[21]提出了一种0.35 THz频率动态孔径远场成像 方法,利用光学调制的方法和单像素检测器在约1 m 处对目标物进行成像,视场高达8 cm×8 cm。 Olivieri等^[22]开发了一种时间分辨非线性鬼成像技 术,获取目标在太赫兹波段的高光谱信息,通过选择 材料的谐振频率可以获得不同的光谱图像,实现对 材料的成分分析。Zhang等^[23]提出了一种无图像且 经济高效的方法用于实时长时间检测和跟踪快速移 动的物体。该方法利用空间光调制和单像素检测来 获取目标物体的空间信息,直接通过单像素测量来 检测和跟踪目标而无须进行图像重建,时间分辨率 可以达1666 frame/s。

2.3 太赫兹单像素编码掩模

如前面单像素成像的基本原理所述,成像中需 要使用系列编码化的太赫兹波来照亮被成像物体, 为此需要对太赫兹光束进行空间调制。然而,目前 商用的基于数字微镜(DMD)或液晶(LC)的空间光 调制器主要应用于可见光/红外波段,在太赫兹波段 因为存在损耗大、制造加工困难等问题而无法适用。 为实现太赫兹光束图案化,在过去的几年中研究人员已经提出了各种解决方案。下文主要对太赫兹编 码掩模技术和编码掩模材料的关键性能做出总结 讨论。

2.3.1 "固态"金属掩模

"固态"金属掩模是早期太赫兹波空间调制的技术 之一,主要利用THz波对金属或电导率较高的材料具 有较大反射,其开/关调制在宽带宽上显示出良好对比 度的特点来实现。如图4(a)所示, Chan等^[24]在透明的 标准电路板(PCB)上部分印刷铜,将其作为随机掩模 来调控太赫兹波,结合压缩感知理论,经300次测量即 可对1024像素的汉字"光"成像。然而,大量掩模版的 制作耗时且复杂,其机械切换速度也会限制系统的成 像速度。后来,利物浦大学的Shen等^[25]利用带有掩模 的旋转金属圆盘实现了快速太赫兹波调制,如图4(b) 所示,经160次测量就能提供质量可接受的32×32像 素的太赫兹图像,整个过程大约需要80s。2016年, Duan等^[26]演示了基于太赫兹波参量振荡器(TPO)的主 动太赫兹单像素成像系统,如图5(a)所示。他们将掩 模图案刻在金属板条上,利用直线电机驱动金属掩模 实现了对太赫兹波的自动调制。图 5(e)~(g)显示了在 1.75 THz的成像频率和20%的采样率下对圆形、矩形 和字母"H"形状孔的压缩成像结果。然而,此方案要实 现更高的分辨率,需要增加刻有掩模版的金属板条长 度。为了解决这一问题, Ermeydan 等^[27]使用基于哈达 玛变换的Cyclic-S矩阵设计掩模版,直线电机前进一列 就可替换掩模版,在不改变图像质量的前提下节约了 成本,简化了装置。尽管"固态"金属掩模能够实现高达 99%的调制深度,但也存在成像参数(像素大小和视场 等)不可调,调制速度有限,掩模设计、切换及对准具有 一定复杂度等问题。

图 4 基于金属掩模的太赫兹单像素成像。(a) PCB 掩模^[24];(b)旋转金属圆盘掩模^[25]

$\label{eq:Fig.4} Fig.\,4\quad Terahertz\ single-pixel\ imaging\ based\ on\ metal\ masks.\ (a)\ PCB\ mask^{\space{24}};\ (b)\ rotating\ metal\ disc\ mask^{\space{25}}$

2.3.2 "动态"掩模

近些年,随着太赫兹调制技术的发展,相比传统的"固态"金属掩模,更为灵活的"动态"掩模设计方 案被提出。其中有两类报道较为广泛:一种是基于 可编码超表面的掩模调控技术,通过将超材料与可 调谐功能材料(如半导体、相变材料、液晶、二维材料 等)结合,实现对太赫兹光束空间的操纵;另一种是 泵浦光控掩模技术,即利用已经成熟商用的DMD将

图 5 基于 TPO 的太赫兹单像素成像^[26]。(a) 成像示意图;(b)~(d)直径为 2 mm 的圆孔、3 mm × 3.5 mm 的矩形和 8 mm × 10 mm 的字母"H"的光学图像;(e)~(g)对应的太赫兹图像

Fig. 5 Terahertz single-pixel imaging based on TPO^[26]. (a) Imaging schematic; (b)–(d) optical images of a round hole with a diameter of 2 mm, a rectangle with size of 3 mm × 3.5 mm, and the letter "H" with size of 8 mm × 10 mm, respectively; (e)–(g) corresponding terahertz images, respectively

可见光/近红外光束图案化后照射到半导体薄片或 相变薄膜(如VO₂薄膜)表面,光束照射到的区域产 生光生载流子或光致绝缘体-金属相变,从而导致入 射太赫兹脉冲的吸收或反射,而未照射区域太赫兹 脉冲可以穿透,从而得到编码化的太赫兹光。详细 探讨了这两种太赫兹"动态"掩模的特点,并对其性 能(如工作带宽、像素数、调制深度、调制速度等方 面)进行对比和总结,最后探讨了技术挑战和应用 前景。

1) 电控可编码超表面掩模

超表面的兴起对太赫兹调制的发展具有重要意 义。早期,东南大学的崔铁军教授^[28]首次将数字编 码引入到超材料的设计中,通过改变二进制数字的 空间排布来调控电磁波。超表面的可编程调控启发 了太赫兹波段电控掩模的发展,其二维阵列构型满 足了空间调制的需要,亚波长的单元设计可实现大 的调制深度。通过将半导体、相变材料、石墨烯等电 控敏感材料引入到超表面的设计中,可以改善普通 超结构可调性差的缺点,实现对太赫兹波的快速、动 态调控。

2006年, Chen 等^[29]将金属谐振环阵列与 n-GaAs 结合构成肖特基结,通过偏置电压控制 n-GaAs 的载 流子浓度,形成通断效果,从而调制谐振强度,在 0.72 THz 处实现了 50% 的调制深度。2009年,该结 构进一步制成4×4像素阵列,其中每个像素由电路 控制,如图6(a)所示,平均调制深度达40%,调制速 率为几kHz^[30]。为了进一步提高调制速率和降低激 励电压,可以降低肖特基结的宽度(即降低等效电 容),如使n-GaAs外延层位于金属微观结构和接地层 之间,如图6(b)所示。通过改变外延层的载流子浓 度调节吸收峰的位置和强度,器件的调制速率高达 12 MHz^[31]。这种设计在调制速率和调制深度之间实 现了良好的平衡。后来,这种结构设计被制成一个 8×8阵列用于高速动态编码 THz 波, 如图 6(c) 所示, 实现了速率为1 frame/s 的太赫兹实时成像^[32]。此 外,采用高电子迁移率晶体管代替肖特基结,调制速 率可以提高到10 MHz,偏置电压可以得到进一步降 低[33-34]。目前,基于半导体的电控掩模调制速率可达

图 6 基于有源半导体的电控超表面掩模。(a) 4×4阵列超材料太赫兹调制掩模^[30];(b)太赫兹超材料吸收器^[31];(c) 8×8阵列超材 料太赫兹调制掩模^[32]

Fig. 6 Electronically controlled metasurface mask based on active semiconductor. (a) 4×4 array metamaterial terahertz modulation mask^[30]; (b) terahertz metamaterial absorber^[31]; (c) 8×8 array metamaterial terahertz modulation mask^[32]

兆赫兹,但受限于加工制造难度,用于太赫兹单像素 成像的掩模通常由多个单元构成,要同时实现单元级 像素控制还依赖于控制电路设计和加工制造水平的 提升。

除了常见的半导体外,一些基于相变材料、石墨 烯和液晶等的方案被提出,用于电控可编码超表面 掩模。如图7(a)所示,Sensale-Rodriguez等^[35]设计 了石墨烯电控吸收调制器阵列用于太赫兹成像,实 现了太赫兹波反射率大于50%的调制以及4×4像 素独立调控。随着石墨烯调控技术的进一步发展, Malevich等^[36]研究了基于电解质门控的石墨烯太赫 兹调制技术,解决了与电解质门控和器件制造相关 的问题,实现了具有256像素、调制速度达1kHz的 太赫兹空间光调制器,如图7(b)所示。虽然石墨烯 材料具有零带隙、电导率可变及调制速度快等优势, 但目前制备超薄、大面积和均匀的石墨烯薄膜仍然

图 7 基于其他可调谐材料的电控超表面掩模。(a)电控石墨烯反射调制器阵列^[35];(b)集成在印刷电路板上的基于石墨烯的调制器 阵列^[36];(c)基于VO₂的8×8调制阵列^[37];(d)基于液晶的双色太赫兹调制器^[38]

Fig. 7 Electronically controlled metasurface masks based on other tunable materials. (a) Electronically controlled graphene reflection modulator array^[35]; (b) graphene-based modulator arrays integrated on printed circuit boards^[36]; (c) VO₂-based 8×8 modulation array^[37]; (d) dual-color terahertz modulator based on liquid crystal^[38]

第 60 卷第 18 期/2023 年 9 月/激光与光电子学进展

面临挑战。

相变材料 VO₂因独特的绝缘体-金属相变特性被 用于制备太赫兹调制器件。最近, Chen等^[37]提出了一 种非易失性 VO₂基于滞后特征的可编程超表面, 如 图 7(c)所示, 它由 8×8像素组成, 每个像素由 VO₂和 领结形金属结构组成。电产生的焦耳热改变了 VO₂的 电导率并控制太赫兹波的反射强度, 但受限于热串扰 的影响, 调制速率为1 kHz。

液晶分子既具有液体的流动性,又具有晶体的各向异性,通过改变偏置电压的大小可以控制液晶分子的排列,从而改变液晶层的折射率。如图7(d)所示, Li等^[38]设计了一种基于可调谐液晶超材料吸收体的 8×8太赫兹空间光调制器,用于太赫兹单像素成像。 然而,受限于液晶分子的响应速度,液晶超材料的调制 速度较慢,且需要高电压驱动。

总的来说,电控可编码超表面掩模通常具有较好 的调制深度,但工作带宽较窄,一般为百GHz的窄带。 同时,要实现对单元的独立控制需要复杂的馈线网络 设计和加工工艺,因而往往采用一个电极控制多个单 元以简化控制电路,导致空间分辨率较低。此外,阵列 集成后必须考虑像素串扰抑制和散热等问题。

2) 泵浦光控材料掩模

如前文所述,目前基于液晶和数字微镜的空间光 调制器(SLM)主要用于可见光/红外频段,直接应用 于太赫兹仍存在重大挑战。研究者针对这一挑战提出 了新的解决方案,即借助一种功能掩模材料,使SLM 调制编码后的泵浦光投射到该掩模材料上,引起掩模 材料相应位置的物理性能改变,使得其表面透射/反射 太赫兹波的特性发生改变,从而获得相应的编码图案。 目前,有效应用于泵浦光控掩模的功能材料有半导体 (硅、锗和砷化镓)、VO2薄膜等。

Chen 等^[39]首先使用光调制手段直接在砷化镓样 品表面调制太赫兹光束,实现了具有动态孔径的近场 太赫兹成像。而后,Busch等^[40]采用相同的调制技术 进行太赫兹光束控制和成像,将投影仪产生的结构光 作用于体硅上产生自由载流子,从而实现太赫兹波的 空间调制。该方法不仅在较宽的频率范围内表现出显 著的调制深度,还可以通过引入虚拟光栅结构来实现 太赫兹波的光学控制,通过使用一系列掩模获得了 64×64 像素的 金属十字架图像。Shrekenhamer 等^[31] 利用DMD的可见光编码模式和半导体的光生载流子 效应实现了可重构的太赫兹编码掩模,如图8(a)所 示。图 8(b)展示了其使用 63、105 和 1023 像素掩模, 以高达1/2 Hz的速度获取的高保真太赫兹图像。 Shang 等^[41]将基于光致动态掩模的 CS 方法运用到太 赫兹单像素成像系统中,如图8(c)所示,并采用反菲 涅耳衍射(IFD)积分来消除衍射的影响,重建得到了 图 8(d)展示的高质量太赫兹光谱图像。

图 8 基于光诱导半导体动态掩模的太赫兹成像。(a)(b)基于 DMD 和LED 光源的太赫兹成像示意图及采用 63、105 和 1023 像素掩 模的成像结果^[31];(c)(d)采用 IFD 算法的压缩太赫兹单像素成像系统和对应的基于 CS 和 IFD 算法重构的太赫兹图像^[41] Fig. 8 Terahertz imaging based on light-induced semiconductor dynamic masks. (a) (b) Terahertz imaging schematic based on DMD and LED light sources and imaging results using 63, 105, 1023 pixel masks^[31]; (c) (d) compressed terahertz single-pixel imaging system using IFD algorithm and corresponding terahertz images reconstructed based on CS and IFD algorithms^[41]

为了提升成像质量和成像速度,需要进一步提高 对薄膜的太赫兹调制深度和调制速度。改善调制深度 的另一种方法就是在半导体表面引入微米或纳米级结构,以减小泵浦激光的反射率。一些经典的做法包括

第 60 卷第 18 期/2023 年 9 月/激光与光电子学进展

在高阻硅(HR-Si)表面添加金属纳米颗粒^[42-45]或者引 入纳米尖阵列结构。电子科技大学文岐业团队^[46]报道 的一种硅纳米尖阵列结构能有效捕获入射光子,增大 对激光的利用率,实现高效、低损耗、宽带太赫兹调制, 合理设计纳米尖长度和纳米填充比可显著提高调制深 度。然而,其在5W/cm²的高激光功率泵浦下也仅能 实现75.8%的调制深度。为此该团队在高阻硅表面 设计了周期性微米金字塔结构(Si-MPA)来进一步增 大调制深度^[47]。硅表面形成的微米金字塔结构将激光的反射率降至10%,在功率为1W的808 nm波长激光作用下调制深度达到93.8%。此外,香港中文大学的Stantchev等^[48]对比了光泵浦硅棱镜中反射、透射和全内反射(TIR)三种模式的调制效果,结果表明全内反射模式具有最小的插入损耗和最高的调制深度(最大调制深度为91%),并将全内反射式光控SLM用于实时太赫兹单像素成像,如图9所示。

图 9 基于全内反射式太赫兹单像素成像系统^[48] Fig. 9 Single-pixel imaging system based on total internal reflection terahertz^[48]

相比电控掩模,光控掩模的调制速度受限于 DMD的切换速度。目前商用的高性能DMD速度为 数十kHz,因而报道的基于泵浦光控掩模的太赫兹成 像速度一般小于ms量级。由于近场倏逝波强度随距 离的增加呈指数衰减,为了减少THz波在调制器内部 传输过程中的衍射效应,通常需要将调制器减薄,以实 现超衍射分辨成像。2016年,Stantchev等^[16]展示了光 控半导体近场太赫兹成像,如图10(a)所示。他们借 助DMD在115 μ m的高阻硅片上间接编码太赫兹波, 并由单点检测器收集携带目标图像的太赫兹信号,同 时通过加载哈达玛正交矩阵,实现了~100 μ m(λ /4)的 成像分辨率。接着,Stantchev等^[49]进一步将硅片厚度 减至 6 μ m,同时结合自适应采样和CS理论将成像分 辨率提高至 9 μ m(λ /45)。 半导体厚度的减小虽然可以提高成像的空间分 辨率,但会导致调制深度降低。相比半导体薄片, VO₂的电导率在绝缘体-金属相变(MIT)过程中最高 可发生5个数量级的突变,使其可以极薄的厚度(几 百纳米)获得高太赫兹调制深度(>80%)。2019年 中国工程物理研究院、四川大学等^[17]使用基于VO₂ 的空间光调制器实现THz单像素近场成像,如 图 10(b)所示。借助DMD对180 nm厚的VO₂薄膜 进行飞秒(fs)激光图案化,同时对近场倏逝波进行哈 达玛空间编码,以4.5 μm的空间分辨率重建了物体 的太赫兹波近场图像。与光栅扫描技术相比,该技 术的信噪比(SNR)提高了10倍,同时结合CS全变分 最小化算法(TV-min),大大缩短了图像采集时间,保 真度高达90%。

图 10 近场太赫兹单像素成像。(a)基于半导体硅的太赫兹单像素成像系统示意图^[16];(b)基于VO₂的太赫兹单像素成像系统示意图^[17] Fig. 10 Near-field terahertz single-pixel imaging. (a) Schematic of terahertz single-pixel imaging system based on semiconductor silicon^[16]; (b) schematic of terahertz single-pixel imaging system based on VO₂^[17]

第 60 卷第 18 期/2023 年 9 月/激光与光电子学进展

3 总 结

先从基于压缩感知理论的单像素成像原理出发,介 绍了单像素成像的发展历程。然后,着重讨论了太赫兹 编码掩模这一关键技术的实施手段和研究进展,从最初 的"固态"金属掩模到后来的电控可编码超表面掩模和 泵浦光控掩模,并对每种方法的优缺点进行了总结。 表1汇总了用于太赫兹单像素成像的掩模技术的实施 方案和技术指标。"固态"金属掩模能够直接调控太赫兹 波实现几近完美的调制深度,但需要配合机械运动装置,且掩模版的制作、对准及移动等问题比较复杂。利用电控超表面编码太赫兹波的方法具有集成度高、灵活等优势,但由于其谐振特性,工作带宽往往较窄,且谐振腔大多由金属制成,对太赫兹波也有一定的损耗。利用可见光波段成熟且商用的空间光调制技术结合半导体、相变材料等可调谐功能材料编码太赫兹波的技术易实现,成本较低,且能在宽带范围内实现,但光路设计较复杂,器件的稳定性和工作效率还有待提高。

表1 不同太赫兹波掩模技术的指标 Table 1 Indicators for different terabertz wave mask techniques

Modulation	Material	Band	Pixel	Modulation	Modulation	Ref.
method		width	number	depth	rate	
Electronically controlled metasurface mask	GaAs	narrow	4×4	40%	\sim kHz	[30]
	GaAs	narrow	8×8	62%	12 MHz	[31]
	GaAs	narrow	8×8	$\sim 70 \text{ dB}$	12 MHz	[32]
	Graphene	narrow	4×4	30%-50%	6 kHz	[35]
	Graphene	narrow	16×16	>70%	1 kHz	[36]
	VO_2	narrow	8×8	65%	1 kHz	[37]
Photoinduced dynamic mask	Si	wide	64×64	25%		[40]
	Si	wide	63 - 1023	33%	0.5 Hz	[31]
	Si	wide	32×32			[41]
	Si prism	wide	32×32	80%	20 kHz	[48]
	$\rm VO_2$	wide	32×32	60%		[17]

太赫兹单像素成像在成本、效率及速率等方面展 现出来的优势使其成为了太赫兹成像的重要技术之 一,但目前还存在着一些问题需要深入研究。首先,在 成像算法方面,虽然基于压缩感知理论的单像素成像 相比机械扫描成像速度已有所提高,但欠采样会造成 原始信号的丢失,导致图像质量欠佳。正交基矩阵和 深度学习等成像算法相继被提出,用来解决数据采集 时间长、图像质量差等问题,但还需要继续优化算法, 在保证图像信噪比的同时进一步提高成像速度,实现 太赫兹动态检测和实时成像。其次,太赫兹编码掩模 技术对成像至关重要,电控超表面调制器需要进一步 提高响应速度,扩大工作带宽。此外,开发利用光电性 能优异的功能材料结合可见光/红外波段的空间光调 制器可获得大调制深度、高调制速度的太赫兹波空间 光调制器,实现高质量太赫兹单像素成像。

参考文献

- Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 679-692.
- [2] Gong Y D, Tang J X, Pang K. Porosity detection in CFRP using reflective terahertz imaging[J]. Journal of Optoelectronics and Advanced Materials, 2022, 24(9/ 10): 413-418.
- [3] Shen Y C, Lo T, Taday P F, et al. Detection and

identification of explosives using terahertz pulsed spectroscopic imaging[J]. Applied Physics Letters, 2005, 86(24): 1-3.

- [4] Sun Q S, He Y Z, Liu K, et al. Recent advances in terahertz technology for biomedical applications[J]. Quantitative Imaging in Medicine and Surgery, 2017, 7 (3): 345-355.
- [5] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718.
- [6] 王彪,王新柯,俞跃,等.太赫兹线阵快速扫描成像[J]. 中国激光, 2019, 46(6): 0614029.
 Wang B, Wang X K, Yu Y, et al. Terahertz linear array fast scanning imaging[J]. Chinese Journal of Lasers, 2019, 46(6): 0614029.
- [7] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.
- [8] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25 (2): 21-30.
- [9] 赵梓栋,杨照华,余远金.单像素成像技术研究进展[J]. 中国激光,2022,49(19):1917001.
 Zhao Z D, Yang Z H, Yu Y J. Research progress of single pixel imaging technology[J]. Chinese Journal of Lasers, 2022, 49(19):1917001.
- [10] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? [J].
 IEEE Transactions on Information Theory, 2006, 52

第 60 卷第 18 期/2023 年 9 月/激光与光电子学进展

特邀综述

(12): 5406-5425.

- [11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
- [12] 杨莫愁,吴仪,冯国英.水下鬼成像的研究进展[J].光 学学报,2022,42(17):1701003.
 Yang M C, Wu Y, Feng G Y. Research progress on underwater ghost imaging[J]. Acta Optica Sinica, 2022, 42(17):1701003.
- [13] 孙鸣捷,闫崧明,王思源.鬼成像和单像素成像技术中的重建算法[J].激光与光电子学进展,2022,59(2):0200001.
 Sun M J, Yan S M, Wang S Y. Reconstruction algorithms for ghost imaging and single-pixel imaging[J].
- Laser & Optoelectronics Progress, 2022, 59(2): 0200001.
 [14] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104 (25): 253603.
- [15] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117-1125.
- [16] Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.
- [17] Chen S C, Du L H, Meng K, et al. Terahertz wave nearfield compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2018, 44(1): 21-24.
- [18] Zanotto L, Piccoli R, Dong J, et al. Time-domain terahertz compressive imaging[J]. Optics Express, 2020, 28(3): 3795-3802.
- [19] Augustin S, Hieronymus J, Jung P, et al. Compressed sensing in a fully non-mechanical 350 GHz imaging setting[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(5): 496-512.
- [20] Liu S L, Hu X X, Lin W Q, et al. Terahertz compressed sensing imaging based on line array detection [J]. Optics and Lasers in Engineering, 2023, 168: 107685.
- [21] Augustin S, Jung P, Frohmann S, et al. Terahertz dynamic aperture imaging at standoff distances using a compressed sensing protocol[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(4): 364-372.
- [22] Olivieri L, Gongora J S T, Pasquazi A, et al. Timeresolved nonlinear ghost imaging[J]. ACS Photonics, 2018, 5(8): 3379-3388.
- [23] Zhang Z B, Ye J Q, Deng Q W, et al. Image-free realtime detection and tracking of fast moving object using a single-pixel detector[J]. Optics Express, 2019, 27(24): 35394-35401.
- [24] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.
- [25] Shen H, Gan L, Newman N, et al. Spinning disk for compressive imaging[J]. Optics Letters, 2011, 37(1): 46-48.
- [26] Duan P, Wang Y Y, Xu D G, et al. Single pixel imaging with tunable terahertz parametric oscillator[J]. Applied Optics, 2016, 55(13): 3670-3675.

- [27] Ermeydan E Ş, Çankaya İ. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications [C]. AIP Conference Proceedings, 2018, 1926(1): 020040.
- [28] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials
 [J]. Light: Science & Applications, 2014, 3(10): e218.
- [29] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444 (7119): 597-600.
- [30] Chan W L, Chen H T, Taylor A J, et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters, 2009, 94(21): 213511.
- [31] Shrekenhamer D, Montoya J, Krishna S, et al. Fourcolor metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12): 905-909.
- [32] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605-609.
- [33] Rout S, Sonkusale S. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation[J]. Optics Express, 2016, 24 (13): 14618-14631.
- [34] Rout S, Sonkusale S R. A low-voltage high-speed terahertz spatial light modulator using active metamaterial[J]. APL Photonics, 2016, 1(8): 086102.
- [35] Sensale-Rodriguez B, Rafique S, Yan R S, et al. Terahertz imaging employing graphene modulator arrays[J]. Optics Express, 2013, 21(2): 2324-2330.
- [36] Malevich Y, Ergoktas M S, Bakan G, et al. Videospeed graphene modulator arrays for terahertz imaging applications[J]. ACS Photonics, 2020, 7(9): 2374-2380.
- [37] Chen B W, Wu J B, Li W L, et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser & Photonics Reviews, 2022, 16(4): 2100472.
- [38] Li W L, Hu X M, Wu J B, et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light: Science & Applications, 2022, 11: 191.
- [39] Chen Q, Jiang Z P, Xu G X, et al. Near-field terahertz imaging with a dynamic aperture[J]. Optics Letters, 2000, 25(15): 1122-1124.
- [40] Busch S, Scherger B, Scheller M, et al. Optically controlled terahertz beam steering and imaging[J]. Optics Letters, 2012, 37(8): 1391-1393.
- [41] Shang Y J, Wang X K, Sun W F, et al. Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction[J]. Optics Express, 2019, 27(10): 14725-14735.
- [42] Chen K J, Bu T, Bai Y, et al. Inkjet-printed random coding metal particles for modulation enhancement of an optical-controlled terahertz wave modulator[J]. Optical and Quantum Electronics, 2016, 48(1): 66.
- [43] Wen T L, Zhang D N, Wen Q Y, et al. Enhanced optical modulation depth of terahertz waves by selfassembled monolayer of plasmonic gold nanoparticles[J]. Advanced Optical Materials, 2016, 4(12): 1974-1980.
- [44] Li Y P, Zhang D N, Liao Y L, et al. Interface engineered germanium for infrared THz modulation[J].

第 60 卷第 18 期/2023 年 9 月/激光与光电子学进展

Optical Materials, 2021, 111: 110659.

- [45] Lee G, Maeng I, Kang C, et al. High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate[J]. Applied Physics Letters, 2018, 112(11): 111101.
- [46] Shi Z W, Cao X X, Wen Q Y, et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 2018, 6(2): 1700620.
- [47] Wen Q Y, He Y L, Yang Q H, et al. High-performance

photo-induced spatial terahertz modulator based on micropyramid silicon array[J]. Advanced Materials Technologies, 2020, 5(6): 1901058.

- [48] Stantchev R I, Yu X, Blu T, et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 2020, 11: 2535.
- [49] Stantchev R I, Phillips D B, Hobson P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 2017, 4(8): 989-992.